Model Selection Based on Tracking Interval Under Unified Hybrid Censored Samples

Authors

  • Hanieh Panahi Department of Mathematics and Statistics‎, ‎Lahijan Branch‎, ‎Islamic Azad University‎, ‎Lahijan‎, ‎Iran
Abstract:

The aim of statistical modeling is to identify the model that most closely approximates the underlying process. Akaike information criterion (AIC) is commonly used for model selection but the precise value of AIC has no direct interpretation. In this paper we use a normalization of a difference of Akaike criteria in comparing between the two rival models under unified hybrid censoring scheme. Asymptotic properties of maximum likelihood estimator based on the missing information principle are derived. Also, asymptotic distribution of the normalized difference of AICs is obtained and it is used to construct an interval, say tracking interval, for comparing the two competing models. Monte Carlo simulations are performed to examine how the proposed interval works for different censoring schemes. Two real datasets have been analyzed for illustrative purposes. The first is selecting between Weibull and generalized exponential distributions for main component of spearmint essential oil purification data. The second is the choice between models of the  lifetimes of 20 electronic components.  

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Tracking Interval for Doubly Censored Data with Application of Plasma Droplet Spread Samples

Doubly censoring scheme, which includes left as well as right censored observations, is frequently observed in practical studies. In this paper we introduce a new interval say tracking interval for comparing the two rival models when the data are doubly censored. We obtain the asymptotic properties of maximum likelihood estimator under doubly censored data and drive a statistic for testing the ...

full text

mortality forecasting based on lee-carter model

over the past decades a number of approaches have been applied for forecasting mortality. in 1992, a new method for long-run forecast of the level and age pattern of mortality was published by lee and carter. this method was welcomed by many authors so it was extended through a wider class of generalized, parametric and nonlinear model. this model represents one of the most influential recent d...

15 صفحه اول

Bayesian analysis and model selection for interval-censored survival data.

Interval-censored data occur in survival analysis when the survival time of each patient is only known to be within an interval and these censoring intervals differ from patient to patient. For such data, we present some Bayesian discretized semiparametric models, incorporating proportional and nonproportional hazards structures, along with associated statistical analyses and tools for model se...

full text

An EM Algorithm for Estimating the Parameters of the Generalized Exponential Distribution under Unified Hybrid Censored Data

The unified hybrid censoring is a mixture of generalized Type-I and Type-II hybrid censoring schemes. This article presents the statistical inferences on Generalized Exponential Distribution parameters when the data are obtained from the unified hybrid censoring scheme. It is observed that the maximum likelihood estimators can not be derived in closed form. The EM algorithm for computing the ma...

full text

Point and interval estimation for Gaussian distribution, based on progressively Type-II censored samples

The likelihood equations based on a progressively Type-II censored sample from a Gaussian distribution do not provide explicit solutions in any situation except the complete sample case. This paper examines numerically the bias and mean square error of the MLE, and demonstrates that the probability coverages of the pivotal quantities (for location and scale parameters) based on asymptotic -norm...

full text

Prediction of Times to Failure of Censored Units in Hybrid Censored Samples from Exponential Distribution

In this paper, we discuss different predictors of times to failure of units censored in a hybrid censored sample from exponential distribution. Bayesian and non-Bayesian point predictors for the times to failure of units are obtained. Non-Bayesian prediction Intervals are obtained based on pivotal and highest conditional density methods. Bayesian prediction intervals are also proposed. One real...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 17  issue None

pages  1- 31

publication date 2018-06

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023